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It has been shown that Discontinuous Galerkin (DG) finite element methods are suitable for
CFD applications in the area of compressible aerodynamic flows [1, 4, 5, 2]. The Reynolds-
averaged Navier–Stokes (RANS) equations in combination with suitable turbulence models such
as the k–ω model of Wilcox [7] can still be considered as state-of-the-art for many applications
in exterior aerodynamics. One of the main drawbacks of DG methods is the relatively high
computation cost per degree of freedom.High Reynolds numbers, the associated highly stretched
meshes typically used for an optimal resolution of turbulent boundary layers, and source terms
present in the turbulence models all contribute to an increased stiffness of the resulting algebraic
system of equations that has to be solved. Implicit operators are generally accepted as key
component for increased efficiency of iterative algorithms. Several authors suggested strongly
implicit schemes that are close to Newton’s method [1, 4]. It is well-known that these implicit
methods work best at the end of the iterative procedure in the regime of asymptotic convergence.
Employing mesh and order sequencing helps to alleviate this problem by providing a good initial
guess.
We will present several strategies to exploit hierarchies of coarse level problems in solver

algorithms, including both level sequencing and linear as well as non-linear multigrid variations
[6]. Based on either lower order discretizations or agglomerated coarse meshes the resulting
algorithms can be characterized as either p- or h-multigrid, respectively. The only difference
between these multigrid algorithms is the use of different coarse level DG discretizations and
therefore transfer operators. All other ingredients like smoothers, timestep control, usage of a
Galerkin-transfer, start up strategy, etc. will stay the same for both kinds of multigrids.
In this work non-linear h- and p-multigrid will be investigated and a linear h- and p-multigrid

used as a preconditioner will be introduced. For the non-linear iteration we employ as underlying
relaxation scheme a linearized Backward-Euler approach based on local pseudo-time steps that
can be considered as a stabilized Newton’s method and is also used predominantly as single-level
solver [1, 4]. The resulting linear system is solved with a Krylov method. This method is precon-
ditioned either by a line-Jacobi iterative scheme or a linear multigrid using the line-Jacobi scheme
as a smoother. We will present 2D numerical examples in order to analyze the performance of
the proposed algorithms with respect to both algorithmic convergence properties and run-time
behavior in comparison with a single-level Backward-Euler scheme. Results indicate that the
best preformacne is achieved with a combination of the linear multigrid as a preconditioner and
a non-linear multigrid. Examples include a three element airfoil (L1T2) testcase [3] on a un-
structured mesh with 23824 elements. Furthermore, the extension to 3D will be demonstrated
on a simplestream lined body (BTC0).
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(a) Computation of a p = 2 solution for the L1T2 case
on an unstructured mesh with 23824 elements.
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(b) Computation of a p = 1 solution for the 3D BTC0
case on a structured mesh with 6656 elements.
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