
A high-order non-linear multiresolution sheme forstohasti-PDER. Abgrall, P.M. Congedo and G. GeraiINRIA Bordeaux�Sud-Ouest, equipes-projet Bahus, FRANCEAbstrat: In the ontext of the solution of stohasti partial di�erential equa-tions, a numerial sheme based on a multiresolution representation of data inthe stohasti spae and an ENO reonstrution operator, is presented. Thekey feature of the proposed sheme is a strategy inspired by the lassial Mul-tiresolution framework proposed by Harten [2℄, and extended to the stohas-ti spae. The ombination of this strategy with a �xed disretization in thephysial spae, leads to an automati re�nement/dere�nement algorithm in theombined physial/stohasti spae. The deterministi sheme is a MUSCL-Hanok seond-order in spae and time, while a third-order reonstrutionis used in the stohasti spae. This method is applied to several problemsof inreasing omplexity, i.e. from the linear advetion equation to the 1Dnon-linear elastiity problem both in homogeneous and heterogeneous media.Results are ompared with some referene non-intrusive tehniques, like MonteCarlo and Polynomial Chaos Methods.Keywords: Multiresolution, ENO reonstrution, Finite Volume, StohastiPartial Di�erential equations1 IntrodutionIn the last deades, a strong e�ort has been devoted to develop aurate and robust numerialshemes for di�erential equations. Moreover, di�erential equations with random oe�ientsor initial and boundary onditions, play an important part in engineering and physis. Thee�et of the variability of suh unertain parameters an a�et the numerial simulation witha preeminent role in high non-linear problems, suh as for example in Computational FluidDynamis.There are several approahes permitting to propagate randomness in numerial simulations.One of the most used is the lassial Monte Carlo method. Reently, a Polynomial Chaos (PC)approah has been proposed (see [1, 3℄), where the solution is expressed as a trunated polynomialexpansion in the spetral spae. Its auray is dependent on the order of the polynomialsreonstrution and of the trunation. However, whenever these tehniques are emerging as well-established method to solve stohasti pde, their employment should be limited to problemswith a smooth solution. In partiular, due to its spetral representation, PC ould not onvergeor have a slower onvergene ratio in presene of disontinuous solution.Note that the presene of disontinuous solution in the physial spae ould indue also adisontinuous response in the stohasti spae. This means that solving aurately the dison-tinuous surfae in the ombined spae ould lead to an infeasible number of alulations, even1



for 1D spaes. For this reason, we developed a multiresolution inspired tehniques based onthe ompressed representation of data in the stohasti spae allowing to retain the auraypresribed on the �nest resolution level with only a fration of the total degree of freedom. Inpartiular, in order to ahieve a higher reonstrution in the stohasti spae, a ubi interpo-lator is introdued employing an ENO-based stenil to ensure the best reonstrution even inpresene of disontinuous solutions.Due to its intrinsially intrusive behavior, the proposed sheme should be implemented di-retly in the deterministi ode. Anyway, only very light modi�ations are needed, while pre-serving the number of equations (not suh as in PC intrusive methods).The deterministi sheme is formulated as a seond-order in time and spae TVD �nitevolume approah, namely the MUSCL-Hanok [4℄ sheme, with di�erent limiting proedure(slope limiters and limited slopes). To show the e�ieny and the �exibility of the overallsheme di�erent unsteady problems will be presented. In partiular, the basi algorithm willbe presented for the salar advetion problem and for the Burgers equation. The validity ofthe approah will also be shown for vetorial ases solving the Lagrangian elasti problem in arod with both homogeneous and heterogeneous material. Both the ase of linear and non-linearonstitutive relations for the material will be addressed.Referenes[1℄ O.P. LeMaître and O.M. Knio. Spetral Methods for Unertainty Quanti�ation. Springer.2010.[2℄ R. Abgrall and A. Harten. Multiresolution Representation in Unstrutured Meshes. SIAMJournal on Numerial Analysis., 35:2128-2146, 1998.[3℄ P. Petterson and G. Iaarino and J. Nordström. Numerial analysis of the Burgers' equationin the presene of unertainty. Journal of Computational Physis., 228:8394�8412, 2009.[4℄ E. F. Toro. Riemann solvers and numerial methods for �uid mehanis. Springer, Berlin.1997.


