Taylor expansion method for linear
lattice Boltzmann schemes with an external drift.
Application to boundary conditions
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Our communication will be divided into two parts. In the first part, we show that it is possible
to get the macroscopic fluid equations of lattice Boltzmann schemes with an external force using
Taylor expansion. In a second part of our contribution, we validate this general expansion by a
detailed application to boundary conditions.

A lattice Boltzmann scheme is defined through the evolution of a population {f;} of ¢ discrete
velocities where time, space momentum are discretized. The population evolves in a succession of
collision and propagation steps on the nodes of a regular lattice in d dimensions, parametrized by
a spatial step Ax. The time step At is determined thanks to the acoustic scale A (i.e. At = %)
For the DdQg scheme, we note (v;)o<j<q—1 the set of ¢ velocities and we assume that for each
node z and each velocity v;, the vertex x — v;At is also a node of the lattice. So a time step of
a lattice Boltzmann scheme can be written as :

where f* is the velocity population after collision. As proposed by d’Humiéres [3|, we introduce
the moments m defined by m = Mef where M is a given invertible matrix. So in the moment
space it is easier to describe the collision step. The moment vector is composed of two kinds of
quantities : the first one of conserved variables V' € RY which are not affected by the collision
step when there is no forcing term. The second one of non conserved quantities Y relax in the
collision step. So the moment vector becomes

m:@).

The lattice Boltzmann schemes with force term are replaced by the following steps :

e The conserved variable are given by : W =V + 6 At F, where 6 is a fixed scalar in |0, 1] and
Fis a given drift term.

e The relaxation step is performed in the moment space as follows : Y* = (Id— S)Y + SY*“4,
where S is the diagonal matrix of the relaxation times sg, N + 1 < s < ¢ — 1 with 0 < s < 2.
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The equilibrium distribution is given by Y°? = E.W, where FE is a fixed matrix with ¢ — N lines
and N columns.

e Due to the force term, the conserved variables during the collision step, evolve according to :
V=V 4+ AtF.

We rewrite the sheme (1) in moment space and we obtain the following equation :

2) ( ¥ > (t+ A1) = S (An) ( ‘é: g: ) ( ¥ ) )+ (A ( Ii: >F

n>0 n>0
We extend the “Berliner version” [1] of the Taylor expansion method for the expansion (2) when

an external forcing term is present. We suppose here that the conserved variables W satisfy a

partial differential equation :

(3) OW = oW + At asW + (At)? asW + -+ + 3 F + (At)1 F + ...
and the non conserved moments Y follow a dynamics of the type
(4) Y = EW + At Bi1W + (At)? BoW + -+ + AtpoF + (At)2p F + ...

We entirely specify the development up to order two on At. By doing Taylor expansion and by
identification with the hypothesis (3), we obtain
o1 = A1+ BiE, ay =By + Ay + ByE— 9L,
Y0 = Go and 1 = Bipg + G1 — 0A; — § (170 + (70 — 20)0,) .
For the equation of the N non-conserved moments we have :
B1=5"1[C1+ D1E — Eo]
By =871 [Dlﬂl — Eay — frag — E%% + O + DzE] ;
po =S~ [Hy— Evy — 0SE)]
p1 =S [Dipo+ Hi — Evi — Bivo — 5Earvo — $Ev0, — pod; — 6C4] .

Using the Taylor expansion method with an external force given by the above method, we analyze
in this contribution a family of situations (1D, 2D) of diffusion and linear fluid problems with
“bounce back ” and/or “anti-bounce back” numerical boundary conditions. The result is that
“magic” parameters proposed in [4] and explored as “quartic” in [2] depend not only on the
detailed choice of the moments but also on the parameter 6 (which is related to how the drift
term is applied). We give a new result for quartic condition for Poiseuille flow with an external
drift for the D2Q13 scheme : 400509 — 7 — 805 + 16050 = 0, where o; = (S% - %) is the Hénon’s

parameter.
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