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We introduce a new class of finite volume method, that we refer to as ”Active Flux” methods. These
differ from regular finite voume methods because the interface fluxes become independent degrees of freedom.
Because these d.o.f. are shared between cells, storage requirements are low. The methods will be described
for linear advection or linear acoustics in any number of dimensions, and have the following characteristics.

1. Conservative,

2. Implemented on unstructured simplicial grids,

3. Fully explicit, single-step time-marching,

4. Stability up to the maximum time step compatible with physics,

5. Based on the multidimensional physics expressed by spherical means,

6. No one-dimensional ingredients,

7. Very compact stencil, with reconstruction inside a cell independent of all other cells,

8. Notable insensitivity to mesh quality.

The lowest-order version is third-order, and results will be shown for this case, although extension to arbitrary
order is possible, at least for linear problems.

For one-dimensional linear advection the method reduces to Scheme V in van Leer [1]. The degrees of
freedom then are the average value in each cell, and the point value at each interface, allowing a quadratic
reconstruction within cells. From this reconstruction we can deduce the total flux through the downwind
interface during the time step, and the new interface value. Then a conservation integral over the cell yields
the new cell average. The overall accuracy of the scheme is third order. Dissipation and dispersion plots for
this scheme are shown in Figure 1, comparing it with a regular third-order finite-volume scheme.

For higher-dimensional problems, in addition to the cell average, we use point values at each vertex and
at the midpoint of each edge, as in Fig 2. These allow for the reconstruction of a quadratic function, together
with a ”bubble function” that ensures conservation. For advection problems with a given flow direction, we
simply trace back the characteristic from each edge location into the appropriate cell, and interpolate to
its origin. After updating all edge values like this, we use numerical integration to establish the new cell
average. This average determines the new ampltude of the bubble function, and ensures conservation.

For problems that obey a wave equation, utt = a2∇2u or one of its close relatives, the procedure makes
use of the result [2] that the solution u(x, t) depends only on data at t = 0 lying within a distance at from
the point x. In three dimensions, the only relevant data lies on the surface of the sphere with that radius,
and in two dimensions in the disc with that radius. There are integals of this data (”spherical means”) that
give the exact solution. Our method in two dimensions consists of drawing such a disc around each edge or
vertex point, as in Figure 3, and computing the integral. This disc will have segments in various cells, and
the reconstruction within each of those cells will be used for the contribution made to the integral by that
segment.1 For one-dimensional problems on one-dimensional grids we recover the method of characteristics.
We stress however that we are not solving ”multidimensional Riemann problems”; our reconstructions do not
contain discontinuities. A similar technique apples to various related equations, such as the heat equation,
the telegraph equation, Maxwell’s equations, and the equations of linear elasticity.[2]

Since the final step in the scheme is a straightforward flux integration, sophisticated analysis such as
this enters only into the prediction of the fluxes at edges and vertices. These predictions do not have to be
conservative, and need only be accurate to second-order. There is therefore great flexibility in how they are
done, and in how nonlinear limiting is applied to them.

In Figure 4, we show the spreading of an initial pressure pulse on a rather coarse unstructured grid. The
symmetry of the solution is maintained extremely well. Third-order accuracy is verified in Figure 5.

By the time of the meeting, we hope to have extended this method to the nonlinear Euler equations.
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1At present we have computed the integrals analytically, but intend to develop Gauss-type numerical formulas.
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Figure 2.2: Di↵usion comparison between AF and third-order FV scheme

We set our target distance for the wave to travel as ten times its own wave length.

Prior analysis by Thomas for a variety of first, second, and third-order schemes showed

that the best performing methods required around 10 to 15 points per wavelength

to compute a solution with less than 1% dissipation at Courant numbers of 1/4 and

3/4 [50]. For this reason, we select twelve points per wave length as a sound number

for a realistic mesh density. The values for the distance traveled by the wave and

the number of points per wavelength make the exponent on the amplification factor

120/⌫. Figure 2.4 plots the AF dissipation for these parameters against the third-

order FV scheme as well as the second-order Lax-Wendro↵ (LW) scheme. The figure
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Figure 2.3: Dispersion comparison between AF and third-order FV scheme

shows the AF scheme has a much lower level of dissipation than the FV scheme for

all Courant numbers and also outperforms the LW scheme over all but the lowest

Courant numbers.

Another property of the AF scheme is that its compact stencil makes it more

insensitive to mesh sizing irregularities than schemes that use more points in their

update formula. This is clearly illustrated in Fig. 2.5, which compares the third-

order FV and AF solutions for a Gaussian pulse after one cycle through the mesh.

The nodal locations were randomly perturbed by ejh, where ej is a random variable,

uniformly distributed from [�d, d], and h is the baseline mesh spacing of 0.0125. As
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Figure 1: Dissipation(left) and dispersion (right) errors for linear advection. Within each block, the Courant numbers
are 0.25, 0.45, 0.55, 0.75. The maximum frequency is 2π instead of π because the storage locations are doubled.
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Figure 2: Degrees of freedom in two and three di-
mensions
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Figure 3: In two dimensions the domain of depen-
dence is a disc centered where the update is required.
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Figure 4: Outcome of an initial Gaussian
pressure pulse, calculated on a coarse, fully
unstructured grid.
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Figure 5: Demonstrating third-
order accuracy on an acoustic prob-
lem.
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