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I. Introduction

We present a high-order DG formulation for the Navier-Stokes equations coupled to a finite element
model of a non-linear membrane. Many approaches have been suggested for the simulation of fluid-structure
interaction,1,2 and a common way to treat the deformable domains is the use of Arbitrary Lagrangian
Eulerian (ALE) methods.3–5 In these efforts the discretization on the deformable domain is carried out on
a deforming grid and thus the metric changes over time.

For the non-linear membrane model we use a continuous Galerkin discretization, integrated in time
simultaneously with the DG discretization. The forces from the fluid are applied to the membrane, and
the membrane displacements provide the deformation of the fluid domain. We note that this monolithic
treatment provides a time-accurate coupling, unlike other approaches where the fluid and the structure are
integrated separately, and forces and displacements are only transferred at the end of each timestep.

In previous work,6 we solved a similar problem using an explicit Runge-Kutta time integrator. While
this approach is simple and does not require any coupling matrices, it may introduce undesirable timestep
restrictions. However, a fully implicit time integrator would require forming not only the Jacobian matrices
for the fluid and the structure problems, but also the couplings between them.

Here, we demonstrate how implicit-explicit Runge-Kutta methods7 can be used to avoid solving the fully
coupled system, with arbitrarily high orders of accuracy in time. We use both the explicit and the implicit
coefficients of the schemes to form a stage predictor for the force from the fluid applied to the membrane.8

This decouples the two implicit problems for the fluid and the structure, respectively, which can be solved
using standard implicit solvers.

The spatial discretization is a standard unstructured-mesh nodal discontinuous Galerkin method9 with
numerical fluxes according to the method by Roe10 and the compact discontinuous Galerkin (CDG) method.11

The deforming domain is handled by the mapping-based approach presented in Ref. 5. A standard neo-
Hookean membrane model is used12 with viscous, fluid-like, dissipation. We use various schemes for the
mesh deformation, ranging from simple Radial Basis Functions to fully non-linear elasticity schemes.13 The
temporal discretization is based on high-order, explicit first stage, diagonally implicit Runge-Kutta (ES-
DIRK) methods for both the fluid and the structure. These also define the stage-predictions for the fluid
forces, which we use to decouple the implicit solution of the fluid and the structure.8 We explore the Runge-
Kutta coefficients from Kennedy & Carpenter,7 obtaining third, fourth, and fifth order convergence in time
using their ARK3, ARK4, and ARK5 methods.

We verify the high-order accuracy of the scheme using a test problem of a heaving and pitching NACA
airfoil in a laminar flow, subject to a simple smooth heaving motion. We also show several examples of fully
coupled fluid-membrane simulations under various flow conditions.
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Figure 1. Convergence study of a model problem of a heaving and pitching airfoil with a torsional spring. The
pivot location of the airfoil is moved upwards between time t = 0 and t = 1. We study the convergence of the
angle of attack θ(t) for a range of schemes and timesteps. The figure shows the relative error in angle of attack,
||θ(t)− θexact(t)||∞/||θexact(t)||∞, as a function of timestep. ARK3, ARK4, and ARK5 refer to the methods of the same
name in Kennedy et al.7 They are third, fourth and fifth order additive Runge-Kutta methods which have 4, 6 and 8
stages respectively. For ARK4 (weak-coupling), we integrated the fluid and structure independently on each timestep,
using an implicit fourth order method. For ARK4 (no predictor) we neglected to use a predictor for the force from the
fluid applied to the structure.
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