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Abstract

We present methods for the numerical integration of functions over domains that
are defined by the zero iso-contour of a level set function. Such integrals appear
in many contexts, but have become a major area of interest due to the recent
rise of sharp-interface methods that are trying to resolve local effects with sub-cell
accuracy. Examples include include the eXtended Finite Element Method (XFEM),
the Finite Cell Method and the Discontinuous Galerkin Method. In a nutshell, such
methods share the property that part of the burden of discretization is shifted to the
numerical integration of generic functions over complicated sub-domains for which
conventional quadrature are not available. The performance of these methods is
thus directly linked to the affordable integration accuracy.

A number of measures to cope with this issue have been proposed in literature.
Typically, they are either based on a regularization of discontinuous/singular in-
tegrands (e.g., [2]) or an adaptive subdivision of cells intersected by the interface
(e.g., [3, 5]). Both approaches reach second-order convergence rates at best, which,
especially in case of higher order methods, is often insufficient.

Recently, a method based on the optimization of the non-linear moment-fitting
equations

J fi(x) dx filx1) ..o filxw) wy

J fu(x) dx fu(xi) oo fu(xn)/) \wn
with given functions f1, ..., far, quadrature nodes x1, . . . , X5 and quadrature weights
w1, ..., wy has been developed [1]. If the left-hand side can be obtained, it can be

used for the pre-calculation of extremely efficient quadrature rules on very general
domains. In [6], the authors restrict themselves to piecewise linear interfaces, sim-
plify the left-hand side and show how the non-linear optimization process can be
reduced to a linear one in this context. The proposed modifications render the
approach practicable in a broader range of applications comprising moving level
sets. Still, the restriction to piecewise linear interface approximations makes a re-
finement near curved boundaries inevitable and, if high accuracy is required, the
process becomes inefficient.

The present work aims at removing the mentioned drawbacks without necessitat-
ing a complex, non-general higher order interface reconstruction. On the contrary,
the presented methods allow for a realization of the same error levels under very
general conditions [4]. In addition, it is easy to implement, reaches extremely high
convergence rates and is completely independent of the underlying grid type (see
Figure 1).
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Figure 1: Convergence study for the calculation of the arc-length of an ellipse
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