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ABSTRACT

We consider systems of conservation laws in d spatial dimensions:

Ut +
d∑

k=1

Fk(U)xk
= 0 (1)

in a spatial domain Ω and t in [0, T ] together with suitable boundary conditions. U is the unknown
vector of conserved quantities and Fk is the flux function in xk-direction.

The spatial elements are denoted K with K ∈ T , while In = [tn, tn+1] is the temporal grid with
n ∈ {0, . . . , N − 1}, t0 = 0 and tN = T .

We work in entropy variables (entropy symmetrisation): Choose an entropy function S(U), then
the entropy variables V are given by V = SU; so U is a function of V. The semilinear form for the
space-time discontinuous Galerkin finite elements method is

BDG(V,W) = −
∑
n

∑
K

∫
In

∫
K

(
〈U(V),Wt〉+

d∑
k=1

〈
Fk(V),Wxk

〉)
dxdt

+
∑
n

∑
K

∫
K
〈U(Vn+1,−),Wn+1,−〉 dx−

∑
n

∑
K

∫
K
〈U(Vn,−),Wn,+〉 dx

+
∑
n

∑
K

∑
K′∈N (K)

∫
In

∫
∂KK′

〈F(VK,−,VK,+; νKK′),WK,−〉 dσ(x)dt

(2)

where N (K) are the neighbouring cells of cell K, ∂KK′ is the common boundary of cell K and K ′

and νKK′ is the outward normal of cell K. The numerical flux F is chosen to be entropy-stable, i.e.
it is an entropy-conservative flux [4] together with a numerical diffusion. Using this form in the weak
formulation already ensures entropy stability and (formally) arbitrarily high order of accuracy. But as
we are interested in solutions with shocks we have to deal with spurious oscillations at discontinuities.

Therefore, we include a streamline-diffusion and a shock-capturing term [2, 3], where the
streamline-diffusion term gives some control on the residual while the shock-capturing leads to ad-
ditional diffusion at shocks. The streamline diffusion term is

BSD(V,W) =
∑
n

∑
K

∫
In

∫
K

〈(
UV(V)Wt +

d∑
k=1

Fk
V(V)Wxk

)
,DSDRes

〉
dxdt, (3)



where Res = U(V∆x)t +
∑d

k=1 F
k(V∆x)xk

is the intra-element residual and DSD is a scaling matrix
proportional to the mesh width ∆x. The shock-capturing term is roughly

BSC(V,W) =
∑
n

∑
K

∫
In

∫
K
DSC

n,K

(
〈Wt,U(V)t〉+

d∑
k=1

〈Wxk
,U(V)xk

〉
)
dxdt. (4)

It adds diffusion proportional to DSC
n,K which is an integral quantity of the norm of the residual normal-

ized by the norm of the gradient of U.
Choosing the space of test and trial functions Vp (piecewise polynomials of degree p) this leads to

the weak formulation: Find V ∈ Vp such that

∀W ∈ Vp : BDG(V,W) + BSD(V,W) + BSC(V,W) = 0 (5)

Note that because the streamline diffusion and the shock-capturing terms are non-negative for W =
V entropy stability carries over to this formulation.

We investigate the convergence properties of the method theoretically and experimentally for a
range of problems [1]. In particular we have solved the linear advection equation, Burgers’ equation,
the wave equation and the Euler equations (see e.g. Figure 1) in one or two spatial dimensions.

Figure 1: Pressure coefficient Cp for a flow over a NACA 0012 airfoil with Ma∞ = 0.75,
computed using 2809 cells and polynomial degree 2.

An important aspect is how to solve the big nonlinear system for the unknown degrees of free-
dom efficiently. We investigate different solution methods, including preconditioning of the linearized
system of equations.
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