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Abstract

High order methods are known for their efficiency when well resolved discretiza-
tions are possible. Discontinuous Galerkin methods are a prominent member and
allow space and time adaptivity in a natural way [1]. In the context of multi-scale
problems, the advantage of a high order accurate discretization is not obvious and
even controversial, as due to the range of scales a well resolved discretization is
typically not feasible. If the problem is underresolved, conclusions drawn from
theoretical analysis with the discretization parameter h → 0 are not generally ap-
plicable. However, convergence order of a discretization is not the only relevant
property when approximating a multi-scale problem. The accurate reproduction
of individual scales, i.e. the dispersion and dissipation behavior of the spatial
derivative operator is more important than the theoretical order of convergence.
To emphasize this proposition, we will demonstrate the accuracy of an analytic
high order discontinuous Galerkin discretization of compressible turbulent flows
[3]. We call the method analytic in the sense that the evaluation of the inner prod-
ucts is exact.

However, in practical applications there is a desire of computational efficiency,
which is typically achieved by approximating the inner products, e.g. with numer-
ical quadrature. A rather efficient variant of such a discrete discontinuous Galerkin
scheme is based on collocation type nodal discontinuous Galerkin approximations,
e.g. [4]. In those methods, the solution as well as the flux functions are approxi-
mated by interpolation polynomials of the same degree, which gives the possibility
to construct highly efficient operators. Among the most efficient variants is the
so-called discontinuous Galerkin collocation spectral element method (DGSEM),
where the flux approximation based on interpolation is collocated with the numer-
ical quadrature used for the evaluation of the inner-products, e.g. [5].

This discretization process has a fundamental impact on the stability of the
high order method due to approximation errors of the non-linear terms, typically
called aliasing, and its associated instabilities. We will show a novel interpreta-
tion of discrete discontinuous Galerkin methods and use this insight to construct
stable discrete operators for the non-linear Burgers equation. We formulate a skew-
symmetric discontinuous Galerkin method and investigate its energy stability for
different common numerical flux functions [2].

As a by-product, the interpretation allows us to combine finite difference, fi-
nite element and even spline based operators in a common discontinuous Galerkin
type framework. All analysis results carry directly over in this case and allow to



introduce a common (computational) framework for the numerical discretization
of hyperbolic partial differential equations.
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