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Ile du Saulcy 57045 Metz France

jean-pierre.croisille@univ-lorraine.fr

††ASTRIUM Space Transportation - Aerodynamics
BP3002 – 78133 Les Mureaux France

pierre.brenner@astrium.eads.net

Keywords: finite volume method, k-exact reconstruction, parallel computing, unstructured grids

ABSTRACT

The quest for high-order accurate finite volume schemes for convection dominated flows remains an important
challenge. Whereas second-order accuracy is sufficient to calculate strong discontinuities, CFD applications in
industrial context such as jet noise predictions, LES modelling, internal flow applications with thermochemistry,
require high-order accurate schemes. For this reason designing finite volume schemes on general grids using high-
order reconstructions has become a scientific objective for industrial CFD codes.

Keeping the paradigm of one unknown per cell, the question can be reframed into two subproblems. The first one is
purely mathematical and is an interpolation problem: it consists in selecting high-order local interpolants based on
the knowledge of averaged values on a certain neighborhood. The second problem is algorithmic: high-order local
interpolants require accessing data beyond the direct neighborhood thus giving a prohibitive computing complexity
specifically on parallel computers.

Such questions were being addressed by several authors since more than 20 years. It has been early recognized
[1] that high-order polynomial interpolation on non cartesian grids lead to stability problems. Such problems were
intensively studied in the framework of adaptive reconstruction stencil selection (ENO or WENO schemes [7]).
Other approaches include non polynomial functions such as RBF or splines [2].

The present contribution is the continuation of preceding studies devoted to the design of high-order centered
polynomial reconstructions [5, 6]. This contribution takes place within the CEDRE project at ONERA. 1 Here we
focus on the second problem namely the data access in irregular (finite-volume) grids for parallelism issues.

Specifically consider a cell α of a general grid together with cells β in the direct neighborhood of α. We show that
it is possible to access high-order derivatives at the barycenter xα by accessing data in the direct neighborhood
only.

A reconstruction in cell α is a linear application mapping the cell averages uβ of u for β in a small neighborhood of
cell α onto a polynomial w of degree k. It is called k-exact [3, 4] if the restrictions of w and u to the cell α coincide
whenever u is a polynomial of degree k. If w has the same averaged value as u over cell α then the reconstruction
is conservative. Let Wα = {β1, . . . , βm} be the cells of the neighborhood used for reconstruction in cell α, with
m = ]Wα and α ∈ Wα, and write uWα = (uβ1 , . . . , uβm). A polynomial w of degree k is uniquely determined
by its mean value over cell α and its k non-vanishing derivatives D(l)w, 1 ≤ l ≤ k, at the barycenter xα of cell

1CEDRE is a multiphysics multisolver 3D code of ONERA / DSNA (Châtillon, FRANCE) for applications in aerothermochemistry and
propulsion.



α. Any k-exact conservative reconstruction is therefore given by k linear applications w
(l)
α that must satisfy for all

polynomials u of degree k

w(l)
α (uWα) = w(l)

α ((uβ1 , . . . , uβm)) = D(l)u
∣∣∣
xα

, 1 ≤ l ≤ k . (1)

The values w
(l)
α are typically calculated using least squares. This requires m ≥

(
k+d

d

)
which gives a lower bound

for the size m of the neighborhood Wα in the case where the reconstruction order k ≥ 2.

The recursive algorithm that is suggested proceeds as follows: let Wα = {β1, . . . , βm} be the neighborhood of
cell α for 1-exact reconstruction. This is typically the direct neighborhood. Let j ∈ {1, . . . , k} and assume that
for each β ∈ Wα there is a w

(j)
β satisfying the identity (1) at cell β. We claim that there exists a linear operator

denoted by J
(j+1)
α depending on the geometry of the grid such that for all polynomials u of degree j + 1

J(j+1)
α

(
D(j+1)u

∣∣∣
xα

)
=

(
w

(j)
β1

(
uWβ1

)
− w(j)

α (uWα) , . . . , w
(j)
βm

(
uWβm

)
− w(j)

α (uWα)
)

. (2)

Identity (2) means that the derivatives of order j + 1 of u at xα are implicitely expressed in terms of the difference
of derivatives of order j. Therefore assuming that the operator J

(j+1)
α in (2) has a left inverse D

(j+1)
α and taking

the left multiplication on the right side of (2) by D
(j+1)
α allows to define a derivative w

(j+1)
α . We insist on the fact

that this calculation only requires values of w
(j)
β for β ∈ Wα.

The core of the reconstruction algorithm is now as follows: starting from a predicted value of the first-order deriva-
tive w

(1)
β , one first computes the second-order derivative w

(2)
β , then the third-order derivative w

(3)
β and so on. This

recursive algorithm avoids accessing large neighborhoods thus drastically reducing the complexity of the recon-
struction.

It can be established that the inverse D
(j+1)
α exists in the case of an uniform cartesian grids. Furthermore numerical

evidence indicates that D
(j+1)
α also exists on tetrahedral as well as on polyhedral grids [5]. The order of accuracy

of the resulting approximation has been numerically assessed for the linear advection equation on unstructured 3D
grids for reconstruction order k = 2 and k = 3 [5].

Further CFD test problems including the propagation of an isentropic vortex will be presented.
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