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The proposed communication takes place in a set of works dedicated to mesh adaptation in third order
accurate CFD calculations. For the applications we consider, the addition of mesh adaptation is paramount
for obtaining a third order numerical convergence with moderate mesh sizes. Further, error models show that
anisotropic mesh adaptation is compulsory, see for example [1]. In order to build rather easily anisotropic
criteria, we choose an a priori analysis. Modern high order methods applying to hyperbolic equations in-
volve distributive schemes, Taylor-Galerkin schemes and ENO ones. In most cases, the third-order versions
are exact if the unknown is a second-degree polynomial. The standpoint we adopted is (1) to express the
approximation error in terms of quadratic interpolation error and (2) to express this interpolation error in
terms of the metric used for defining the mesh.

The 2D approximation scheme we consider is a Central ENO. as introduced in [2] and [3], with a quadratic
reconstruction. It is build on the dual cells of a triangulation. When combined with a Riemann solver at
interfaces between cells, this approximation involves a stabilizing term, the dominent part of which is a
fourth derivative weighted with a local mesh size at the power three. It is then rather dissipative. Further,
with dual cells, the number of Gauss quadrature points between cells is high and multiplies the number of
Riemann solvers to compute. In the CENO we use, the Riemann solvers are replaced by arithmetic means
and a simplified dissipation with sixth derivatives and fifth-order impact on error is added. This brings a
lower cpu cost and a lower dissipation.

Then a simplified a priori error analysis is developed. We got inspired by the a posteriori analysis by [4].
The state equation is denoted:

B(u, v) = F (v) (cont.state eq.)

In a goal-oriented context tending to minimize the error:

εh = (u− u0, g),

where u0 denotes the cell mean of the discrete approximation of u,

B(v, u∗0) = (g, v) (discrete adjoint eq.)
B(R0

pu0, v) = F (v) (discrete state eq.) (1)

where R0
p denotes the reconstruction operator and u∗0 the adjoint state. Let us introduce the following

measure of the approximation error:
ε̃h = (R0

pπ0u−R0
pu0, g),

where π0 holds for replacing a function by its mean on each cell. We obtain an error model of it expressed
in terms of the reconstruction error and the adjoint state u∗0:

(g,R0
pπ0u−R0

pu0) ≈ B(R0
pπ0u− u, u∗0) (2)
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Then we need a representation for the quadratic reconstruction error R0
pπ0u − u in terms of the metric

M parametrizing our mesh.
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where τu and nu are two orthogonal directions, τu being the directional where the third order derivative of
u is the largest. Then a metric optimization can be performed and produce an adapted mesh.

The above analysis with p = 2 has been introduced, together with the novel CENO scheme, in the
demonstrator described in [5] which produces adapted meshes for both steady and unsteady flows. Steady
flows around airfoils and unsteady acoustics propagations will be the basis of a comparison between second-
order based and third-order based mesh adaptation.
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